Au/Co promoted CeO$_2$ catalysts for formaldehyde total oxidation at ambient temperature: role of oxygen vacancies†

Guillaume Rochard, a Jean-Marc Giraudon, a Leonardo Francesca Liotta, b Jean-François Lamonier a, b

Au catalysts with loadings of 1.5 and 3 wt% were dispersed over CeO$_2$ and Co (9; 12 mol%) promoted CeO$_2$, using the deposition–precipitation method, followed by calcination at 350 °C. The fresh supported Au catalysts were characterized using several techniques in order to investigate their morphological, structural and redox properties before being tested for formaldehyde (HCHO) total oxidation. All of the supported Au catalysts exhibited HCHO oxidation into CO$_2$ at 25 °C and demonstrated a great stability for the time on stream (40 h). The 3 wt% Au catalysts demonstrated a higher HCHO conversion than their low-gold counterparts (1.5 wt% Au), a remarkable improvement in the HCHO conversion was observed using Co-promoted ceria (9 mol%). Based on the HCHO amount (in μmol) converted into CO$_2$ per gram of gold per second after 40 h on stream, the 1.5Au/Co catalyst demonstrated the best activity (~3.9) as compared to the other catalysts (≤2.0). X-ray photoelectron spectroscopy (XPS) characterization of the fresh catalysts indicated that the Au species were mainly in a slightly ionic δ$^+$ valence state, but did not exclude the possibility of metallic gold. Furthermore, no marked changes were found in gold dispersion upon adding cobalt. Promotion of the HCHO oxidation over gold supported on Co-promoted ceria catalysts can be related to the higher concentration of oxygen vacancies and an improvement in the redox properties, which can contribute to the better activation of O$_2$ and an enhancement of the oxygen mobility.

Introduction

Formaldehyde (HCHO) is a dangerous volatile organic compound (VOC), mostly used in the wood industry as a glue component. Degradation of this glue with time allows the release of HCHO into the indoor environment. It is well known that prolonged exposure to HCHO contributes to important health issues (such as a burning sensation, breathing problems, and certain cancers). This pollutant can be removed from air using several methods such as adsorption and photocatalysis. However, total oxidation by heterogeneous catalysis into harmless species (CO$_2$ and H$_2$O) is the most promising alternative. So far, supported noble metals catalysts such as Pt, Pd and Au have been successfully used for low/room temperature catalytic oxidation of formaldehyde. The performance of supported metal catalysts relies on many factors, including the metal particle size, dispersion and metal–support interactions, and differentiation of these effects is challenging in order to gain an insight into the operating mode of the catalyst. As a catalyst, gold was considered to be inert until work by Haruta et al. showed highly dispersed gold nanoparticles (NPs) to be very active in CO oxidation. It is commonly reported that dispersion has a significant importance for gold activity in VOC removal. However, the dispersion of gold NPs is mostly related to the mode of preparation, gold loading and calcination temperature. Among the different materials already used for gold deposition, such as hydroxyapatite, fluorapatite, SiO$_2$, HZSM-5, Al$_2$O$_3$, FeO$_2$, TiO$_2$, and ZrO$_2$, CeO$_2$ appears to be an attractive material owing to its low-temperature redox activity, unusual oxygen storage capacity and the possibility of interacting strongly with gold. It is well known that the electronic and redox properties of ceria are dominated by the presence of oxygen vacancies, which are thought to play a major role in catalysis. Sayle et al. highlighted the correlation between the low formation energies of surface oxygen vacancies (facilitated on the (110) and (310) planes) and the CO oxidation reaction. Thus, the authors predicted that any process which preferentially exposed the (110) and (310) surfaces would enhance the activity for CO oxidation. In addition, Liu et al. revealed an
interesting correlation between the size of the oxygen vacancy clusters and promotion of the reducibility and activity of the ceria nanorods in the CO oxidation reaction. The oxidation of low concentration formaldehyde in air over Au/CeO₂ in HCHO oxidation is well reported.¹⁵,²⁵–²⁷ It turns out that oxygen vacancies play a critical role in the HCHO oxidation reaction. In this respect, Jing et al.²⁰ found that the oxidation of HCHO is more favorable on Au/Ce₁₋ₓO₂−₂y than on Au/CeO₂, which is consistent with the co-adsorption of HCHO and O₂ on the defective CeO₂ surface. The presence of adsorbed active oxygen species contributed to the C-H cleavage and reduced the energetic cost of the HCHO oxidation reaction. Xu et al.²⁸ reported the importance of the shape and size control of ceria to give nanorods with {110} and {100} facets which present a relatively low energy for oxygen vacancy formation. Furthermore, Li et al.²⁹ reported on the beneficial role of the high surface area of ceria which provided a high density of oxygen vacancies and also reported the presence of high oxidation states of gold through the formation of a Au₄Ce₄₋ₓO₆₋₂x solid solution as potential centers for HCHO adsorption.

In order to gain more efficient catalysts for HCHO oxidation one possible strategy could be to dope ceria with another transition metal (TM) by researching the synergetic effect between the two TM oxides allowing better activation of the Au species and a better mobility of the active oxygen species on the catalyst surface. In this way, the performances of Au–CeO₂–Co₃O₄ based catalysts were investigated in HCHO oxidation.³⁰,³¹ Liu et al.³¹ reported 100% HCHO conversion into CO₂ at a temperature of about 39 °C over a three-dimensionally ordered macroporous (3DOM) Au/CeO₂–Co₃O₄ catalyst performed better than a 3DOM Au/CeO₂ catalyst. A synergetic effect between Co₃O₄ and CeO₂ through the participation of CoOₓ in the oxygen transfer during the HCHO catalytic oxidation process was proposed by the authors to account for this behavior.

In this paper we present a novel approach for the synthesis of Au/CeO₂–Co₃O₄ catalysts based on the dispersion of gold (1.5 and 3 wt%) by deposition–precipitation (DP) over Co-promoted ceria (Co: 9 and 12 mol%) and un-promoted ceria synthesized using the hydrothermal method. Both the catalytic reactivity and stability of the as-prepared samples towards HCHO oxidation were examined. The fresh catalysts were characterized extensively using X-ray diffraction (XRD), Raman spectroscopy, N₂-physisorption, H₂ temperature-programmed reduction (H₂-TPR), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). High-resolution transmission electron microscopy (HRTEM) images were registered for two selected catalysts. The catalytic performances are discussed in terms of the effects of the oxygen vacancies.

Experimental details

Materials synthesis

Ceria based oxides were prepared via the hydrothermal method, adapted from the research published by Xu et al.²⁸ Typically, for pure ceria preparation, 6 g of Ce(NO₃)₃·6H₂O (Aldrich, 99%) was dissolved in 30 mL of H₂O and 40 mL of NaOH (2.5 mol L⁻¹; Aldrich, >98%) was added to the solution under vigorous stirring. The resulting suspension was rapidly transferred into a 100 mL Teflon autoclave and heated in an oven at 120 °C for 23 h. The aged precipitate was collected by filtration, washed with deionized water until neutral and finally with ethanol. The resulting powder was dried overnight at 60 °C and calcined at 350 °C for 3 h (heating rate 2 °C min⁻¹). This sample was denoted as Ce.

For the Co-promoted ceria preparation, the same experimental procedure was used except that an appropriate amount of Co(NO₃)₂·6H₂O (Aldrich, 99%) was simultaneously added with the cerium(III) nitrate into 30 mL of H₂O. These samples were denoted as CeCoₓ with x = 9 or 12, expressing the Co molar percentage.

For the synthesis of the Au based catalysts, an appropriate volume of HAuCl₄·3H₂O (0.01 mol L⁻¹; Aldrich, 99.999%) was added to an aqueous suspension of the ceria based support and stirred for 1 h. At that stage, the pH of the solution was fixed at approximately 7.5–8.0 by adding K₂CO₃ (0.05 mol L⁻¹; Aldrich > 99%) and the temperature was allowed to increase to 65 °C. The suspension was stirred overnight. After filtering and careful washing with hot (50 °C) deionized water, the powder was dried overnight at 80 °C before being calcined at 350 °C for 2 h (heating rate 2 °C min⁻¹). These samples were denoted as yAu/CeCoₓ with y = 1.5 or 3, expressing the Au weight percentage.

Material characterization

N₂ adsorption–desorption isotherms were measured at the temperature of liquid nitrogen, using a gas adsorption analyzer (TriStar II 3020). The sample was heated at 100 °C for 3 h under vacuum before measurement. The pore volume was determined at P/P₀ = 0.99. The Brunauer–Emmett–Teller (BET) method was used to calculate the specific surface areas. The Barrett–Joyner–Halenda (BJH) model was used to estimate the pore size distributions.

X-ray diffraction measurements were carried out using a Bruker D5000 vertical goniometer equipped with a Cu anode (Kα radiation λ = 1.5418 Å) and a graphite monochromator. A proportional counter and a 0.05° step size in 2θ were used. The integration time was 10 s per step and the scan range was from 20 to 80° in 2θ. The assignment of the various crystalline phases was based on comparison with files in the ICSD (Inorganic Crystal structure data base). The mean crystallite size (d) of the CeO₂ phase was calculated from the line broadening of the most intense reflection (111) using the Scherrer equation.

High-resolution transmission electron microscopy characterization was performed using a TECNAI TEM operating at an accelerating voltage of 200 kV. The prepared powders were deposited onto a carbon-coated copper grid for TEM observation.
The Raman spectra were recorded with a XY800 Raman Dilor spectrometer equipped with an optical multichannel detector (liquid nitrogen-cooled charge coupled device). The 647.1 nm excitation line of a Spectra Physics ion laser with very low power (3 mW) was focused on the compounds using the macroscopic configuration. LABSPEC software allowed us to realize acquisitions and perform data processing. Micro-Raman spectroscopy measurements were also performed with a Horiba Jobin-Yvon Labram infinity instrument, equipped with a liquid nitrogen cooled CCD detector. The Raman spectra were recorded at $\lambda = 532$ nm with a laser power of 0.6 mW. Spectra were recorded in the ex situ mode at room temperature in ambient air. The I_{DES}/I_{Fg} ratio was determined using the following procedure. The area of the F_{2g} component was first extracted from the area of the half-peak positioned on the low Raman shift. The DEF component was deduced from the difference between the total area of the envelope and that of the F_{2g} component.

Redox properties of the samples were evaluated using a conventional temperature-programmed reduction apparatus (Micromeritics model AutoChem II) which monitored the hydrogen consumption of the sample. 50 mg of the sample was placed in a quartz reactor and heated in flowing air (50 mL min$^{-1}$) at 150 °C for 0.5 h and then cooled down to 20 °C. Then, the reactor was heated from 20 to 1000 °C with a heating rate of 10 °C min$^{-1}$ in a gas mixture (5 vol% H$_2$ + 95 vol% Ar, 50 mL min$^{-1}$).

The XPS analyses were performed using a VG Microtech ESCA 3000Multilab, equipped with a dual Mg/Al anode. The unmonochromatized Al Ka radiation (1486.6 eV) was used as the excitation source. The sample powders were analyzed as pellets, mounted on double-sided adhesive tape. The pressure in the analysis chamber was in the range of 10$^{-8}$ Torr during data collection. The binding energies (BE) of the different core levels were referred to the Ce uiii component associated to the Ce 3d$_{3/2}$ component set at 916.7 eV. Rapid scans of the Ce 3d region were performed before each analysis in order to evaluate the Ce$^{3+}$ percentage avoiding possible Ce$^{4+}$ reduction under the beam.32 Analyses of the peaks were performed using the software CasaXPS. Atomic concentrations were calculated from the peak intensity using the sensitivity factors provided in the software. The BE are quoted with a precision of ±0.15 eV and the atomic percentage with a precision of ±10%.

The ToF-SIMS data were acquired using a ToF-SIMS5 spectrometer (ION-TOF GmbH Germany) equipped with a bismuth liquid metal ion gun (LMIG). The samples were bombarded with a pulsed Bi$^+$ primary ion beam (25 keV, 0.25 pA) rastered over a 500 \times 500 μm surface area. With a data acquisition of 100 s, the total fluence did not amount to 1012 ions/cm2 ensuring static conditions. Charge effects were compensated by means of a 20 eV pulsed electron flood gun. Data were collected over a mass range of $m/z = 0$–1200 for both positive and negative secondary ions. The fragments were identified by their exact mass, coupled with the appropriate intensities for the expected isotope pattern.

Catalytic performances

The catalytic oxidation of formaldehyde was performed in a fixed-bed reactor (internal diameter = 10 mm) loaded with the catalyst. Before each test, the catalyst was pre-treated for 1 h at 300 °C under an O$_2$ (20 vol%)/N$_2$ flow (100 mL min$^{-1}$) to remove water and surface impurities. Gaseous formaldehyde was generated from para-formaldehyde in a permeation tube placed in a permeation chamber (Dynacalibrator, VICI Metronics Inc.). By adjusting the gas carrier flow (O$_2$ (20 vol%)/N$_2$) at 100 mL min$^{-1}$ and the chamber temperature at 100 °C, a stable formaldehyde concentration of 100 ppmv was generated.

After pre-treatment, the reactive flow was flushed over the catalyst at 300 °C for 1 h and the temperature was then allowed to decrease from 300 to 40 °C (0.5 °C min$^{-1}$ until 100 °C and 0.2 °C min$^{-1}$ until 40 °C) when using free-Au catalysts. In the case of the Au based catalysts, the temperature was allowed to decrease from 300 to 100 °C in air. At that stage the reactive mixture was introduced into the reactor and after 1 h under that mixture, the temperature was allowed to decrease from 100 to 25 °C (0.2 °C min$^{-1}$). The catalysts were then treated for 1 h at 25 °C in dry air under the same operating parameters ([HCHO]: 100 ppmv, total flow rate: 100 mL min$^{-1}$). Following this the test of durability was performed for 40 h at 25 °C.

The HCHO oxidation tests were performed over 200 mg (free-Au based catalysts) or 100 mg (Au based catalysts). The effluent gases were analyzed online with a Varian CP-4900 Micro-GC equipped with a thermal conductivity detector and COX type column (1 m). The formaldehyde conversion (X_{HCHO}, %) was evaluated using the following equation:

$$X_{\text{HCHO}}(\%) = 100 \times \frac{\text{[CO}_2\text{]/[HCHO]}_\text{ini}}{\text{[HCHO]}_\text{ini}}$$

In which [CO$_2$] is the concentration of CO$_2$ at time t and [HCHO]$_\text{ini}$ is the initial concentration of formaldehyde.

Results and discussion

Textural properties

N$_2$ adsorption–desorption isotherms of the supports are shown in Fig. S1a.* The ceria based samples showed isotherms of type IV with a narrow hysteresis loop for the Co-promoted ceria. ($P/P_0 = 0.85$ to 1 compared to $P/P_0 = 0.9$ to 1 with Co-free ceria). After Co addition, a decrease of about 25% of the SSA compared to pure ceria was observed (Table 1) accompanied by pore size distribution enlargement, while the pore volumes remained unchanged. These results may suggest that cobalt addition affects the morphology of ceria. It is generally reported in the literature that when TM ions were promoted in the ceria structure, the specific surface area (SSA) increased because of the decrease in the crystallization of the metal promoted cerium based oxides.33,34 Based on our results, it can be proposed that small particles of the cobalt oxides are formed at the CeO$_2$ external surface, contributing to the SSA decrease. Au introduction on the supports did not significantly change the isotherms shape (Fig. S2a†). For the
same support composition, the porous volume and average pore size were slightly decreased without significant variation in the SSA values (Table 1). This suggests that well dispersed gold nanoparticles are present at the support surface.

Structural properties
The XRD patterns of the different samples are shown in Fig. 1. The peaks at $2\theta = 28.5^\circ$, 33.0$^\circ$, 47.4$^\circ$, 56.2$^\circ$, 59.0$^\circ$, 69.4$^\circ$, 76.6$^\circ$ and 79.0$^\circ$ correspond to diffraction from the (111), (200), (220), (311), (222), (400), (331) and (420) planes of the fluorite CeO$_2$ structure, respectively (JCPDS PDF no. 34-0394). After doping with cobalt, the XRD patterns were quite similar to pure ceria. The CeO$_2$ diffraction peaks were not shifted and the average crystallite size of ceria was unchanged (Table 1). It is generally observed that when Co is introduced into CeO$_2$, a gradual ceria peak shift towards a higher angle side and decrease in the ceria crystallite size occur with a Co concentration increase. This is explained by the incorporation of smaller Co$^{2+}$ and/or Co$^{3+}$ cations into the Ce$^{4+}$ ion sites, leading to a decrease in the unit cell volume. However to accommodate the change in size, some authors propose that up to 5 at%, the incorporation of Co$^{2+}$ causes the reduction of Ce$^{4+}$ into Ce$^{3+}$ leading to the reverse observation, that is an increase in the crystallite size and lattice parameter with a shift to the lower angles. The decrease in crystallite size is generally accompanied with an increase in the SSA. Conversely, a decrease in the SSA observed for the CeCo$_9$ and CeCo$_{12}$ samples supports the possible formation of a Co containing phase separate to the CeO$_2$ crystalline phase. In addition, a careful examination of the XRD patterns of the cobalt containing samples revealed small features attributed to the (311) planes of the Co$_3$O$_4$ spinel (JCPDS PDF no. 43-1003) which were observed in the 2θ range 35–40$^\circ$ (Fig. S3†). After deposition of 1.5 wt% of gold, no diffraction peak for metallic Au (JCPDS PDF no. 64-0091) at $2\theta < 38.2^\circ$ (111) was detected, suggesting the presence of highly dispersed crystallites. In the case of Au 3 wt% a broad feature corresponding to the Au (111) peak can be noticed, this is probably due to the higher weight content and or a slight size increase with respect to the 1.5 wt% of gold (Fig. S3†). Owing to the low intensity and partial overlapping of the Au (111) and Co$_3$O$_4$ (222) peaks, it is not straightforward to evaluate the Au crystallite size.

In order to gain further insights into the Au particle size and shape, as well as the representative morphology of the CeO$_2$ and Co-promoted CeO$_2$ oxides, HR-TEM images were registered on two selected samples, 3Au/Ce and 3Au/CeCo$_9$. In Fig. 2 two representative images are shown.

Au nanoparticles around 5 nm were detected for 3Au/Ce (Fig. 2a), and slightly smaller (3–5 nm) gold particles were found in the case of 3Au/CeCo$_9$ (Fig. 2b). Moreover, in accordance with the hydrothermal preparation method used for the synthesis of the supports, the formation of CeO$_2$ nanorods (with a width around 5 nm and length in the range 30–100 nm) was very evident.

Raman spectroscopy was used to characterize the nature of the ceria support. For the sake of comparison with the Micro Raman spectrum of the as-made ceria, a commercial

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET} / m2 g$^{-1}$</th>
<th>Pore volume / cm3 g$^{-1}$</th>
<th>Average pore size / nm</th>
<th>d(CeO$_2$) / nm</th>
<th>I_{DEF}/I_{F2g} a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce</td>
<td>111</td>
<td>0.50</td>
<td>20</td>
<td>10</td>
<td>0.10</td>
</tr>
<tr>
<td>CeCo9</td>
<td>82</td>
<td>0.54</td>
<td>32</td>
<td>12</td>
<td>0.33</td>
</tr>
<tr>
<td>CeCo12</td>
<td>89</td>
<td>0.56</td>
<td>32</td>
<td>13</td>
<td>0.42</td>
</tr>
<tr>
<td>1.5Au/Ce</td>
<td>116</td>
<td>0.42</td>
<td>13</td>
<td>10</td>
<td>0.38</td>
</tr>
<tr>
<td>3Au/Ce</td>
<td>107</td>
<td>0.38</td>
<td>15</td>
<td>10</td>
<td>0.51</td>
</tr>
<tr>
<td>1.5Au/CeCo9</td>
<td>79</td>
<td>0.44</td>
<td>24</td>
<td>12</td>
<td>0.50</td>
</tr>
<tr>
<td>3Au/CeCo9</td>
<td>80</td>
<td>0.41</td>
<td>22</td>
<td>12</td>
<td>0.55</td>
</tr>
<tr>
<td>3Au/CeCo12</td>
<td>85</td>
<td>0.44</td>
<td>19</td>
<td>13</td>
<td>0.58</td>
</tr>
</tbody>
</table>

a I_{DEF} corresponds to the intensity of the Raman lines owing to ceria defects; (>470 cm$^{-1}$).

![Fig. 1 XRD patterns for the Ce, CeCo$_x$ and yAu/CeCo$_x$ samples.](image-url)
CeO₂ (Aldrich) is also displayed in Fig. 3. The two Raman spectra were dominated by a strong peak assigned to the vibrational mode of F₂g symmetry in a cubic fluorite lattice. Interestingly, as compared to the Raman spectrum of the commercial CeO₂, the line shifts downwards (465 cm⁻¹ to 462 cm⁻¹), the line shape becomes broader (full-width half maximum (FWMH) × ≈ 3) and an asymmetric peak on the low-energy side appeared clearly. These three features attest of the nanocrystallinity of the Ce support compared to the commercial CeO₂ sample. Additionally, some broad and ill-defined peaks were found located at about 260, 420, 480 and 600 cm⁻¹ in accordance with the literature. The lines in the 480–600 cm⁻¹ wavenumber range have been previously correlated to the presence of oxygen vacancies in ceria which are accompanied by the formation of reduced Ce³⁺ sites. The presence of lines in this energy range for Ce as compared to the commercial ceria indicates that smaller ceria particles possess an increased intrinsic capability towards oxygen vacancy formation. Recently an explanation for the origin of these experimentally observed lines within the 480–600 cm⁻¹ region has been reported based on the calculated Raman spectra of the reduced bulk ceria obtained from an ab initio density functional theory (DFT) study of the vibrational properties of ceria. The reduced model systems display signature vibrational lines in the 480–600 cm⁻¹ region associated with the presence of oxygen defects and reduced Ce³⁺ ions. This study highlighted that the spectral properties were strongly influenced by the coordination cubes around Ce⁴⁺/³⁺ ions in CeO₂₋ₓ.

Fig. 4 exhibits the macro-Raman spectra of the Ce, CeCoₓ and yAu/CeCoₓ samples. To assess the influence of the added Co ions on the structure of cerium oxide the Raman spectra of Ce and CeCo₉ are directly compared in Fig. S4.† We observed an increase of the shoulder at 490 cm⁻¹ for the Co-containing ceria which can be related to a mode of vibration associated with a Ce³⁺O₈ cube. This observation can be attributed to an increase in the oxygen vacancy density induced by the partial incorporation of Co³⁺ in the ceria lattice. However, the Raman spectra of all Co promoted CeO₂₋ₓ exhibited an active Raman line at 693 cm⁻¹ which can be assigned to the presence of Co₃O₄. This is consistent with the micro Raman spectrum given in Fig. S5.† Thus, for some investigated grains, the characteristic Raman signature of Co₃O₄ can be clearly observed. The Raman spectrum exhibited five active Raman lines at 194, 480, 523, 618, and 693 cm⁻¹ in accordance with the literature. The intensity ratio \(I_{\text{DEF}}/I_{\text{F₂g}} \) has been estimated, \(I_{\text{DEF}} \) being the contribution of the Raman lines to the ceria defect lines >470 cm⁻¹ (Table 1). A direct comparison of the \(I_{\text{DEF}}/I_{\text{F₂g}} \) ratios shows that the density of Ce³⁺O₄ polyhedrons increases with the Co content. Furthermore, for a given Co content, a gold promotion effect is also found for the defective entities. The Raman spectra for the yAu/CeCoₓ samples indicated further defective ceria consistent with the relative increase of the intensity of the lines.
localized in the defect band regions 480–600 cm\(^{-1}\). This indicates that gold promotes the density of Ce\(^{4+}\)O–V\(_0\) and Ce\(^{4+}\)O–V\(_{0'}\) polyhedrons and even more when the gold content increases (Table 1).\(^{47}\) It is worth noting that there was a line at 831 cm\(^{-1}\) which could be attributed to the nonplanar bridging peroxide species.\(^{49}\) This result indicates that nanocrystalline CeO\(_2\) stabilizes O\(_2\) in part as a peroxide species.

Redox properties

The H\(_2\)-TPR profiles of the supports are depicted in Fig. S6† and hydrogen consumption values are listed in Table 2. The pure ceria sample exhibited two main reduction regions denoted as medium temperature (MT) (200 < \(T\) < 600 °C) and high temperature (\(T\) > 600 °C). The H\(_2\) consumption centered at around 450 °C corresponds to the Ce\(^{4+}\) reduction from the uppermost layers, while the second one at a higher temperature (centered at around 900 °C) originates from the reduction of the bulk CeO\(_2\).\(^{50}\) The addition of cobalt to ceria modified the H\(_2\)-TPR profiles. The reduction peak of the bulk ceria shifted to a lower temperature (~800 °C). The low temperature envelope between 200 and 400 °C is similar to that obtained for the reduction of CoO\(_x\). The small peak at around 250 °C can be assigned to the reduction of Co\(^{3+}\) to Co\(^{2+}\), while the second one (around 300 °C) originates from Co\(^{3+}\) reduction to Co\(^{2+}\).\(^{51,52}\) The shoulders of the peak at high temperature (320–400 °C) could be assigned to the reduction of the surface CeO\(_2\). Therefore, in the presence of cobalt, the ceria (surface and bulk) reduction takes place at a much lower temperature. This could be explained by a hydrogen spillover effect on the metallic cobalt particles, which facilitates the ceria reduction.\(^{26}\) A decrease in the hydrogen consumption for CeCo12 in comparison with CeCo9 was found (Table 2) consistent with the increase in the Ce\(^{3+}\) density in agreement with the Raman results. It is worth noting that the H\(_2\)-TPR profiles obtained for the CeCo9 and CeCo12 samples are similar to those obtained for the CoO–CeO\(_2\) catalysts prepared by impregnation of the Co species over a ceria support,\(^{53,54}\) confirming that the cobalt is mostly in the CoO\(_2\) phase.

The H\(_2\)-TPR profiles for the yAu/CeCo\(_x\) catalysts are depicted in Fig. 5. For all of the samples an additional low temperature (LT) (\(T\) < 200 °C) H\(_2\) consumption at ~85 °C was observed. This contribution comes from the surface ceria reduction, which can be largely facilitated by the presence of metallic Au sites at the interface with ceria through a hydrogen spillover effect.\(^{50}\) The hydrogen consumption was similar for pure ceria and 1.5Au/Ce (Table 2). If we take into account the increase of the amount of Ce\(^{3+}\) through gold loading (Raman results), the expected H\(_2\) consumption should be less than that of 0.81 mmol H\(_2\) g\(^{-1}\) which is registered for ceria alone. The observed value for 1.5Au/Ce can be explained by the presence of some additional reducible cationic gold species into the catalyst. For 3Au/Ce, the further decrease in H\(_2\) consumption can be related to the more defective ceria structure, as previously shown in the Raman spectroscopy results.
(Table 1). For the Au/CeCo\textsubscript{x} catalysts, the low temperature (LT) \(\text{H}_2 \) consumption values decreased in comparison with those of the Au/Ce samples for an Au loading of 1.5 wt\% loading (Table 2) confirming the beneficial role of cobalt in the formation of oxygen vacancies directly connected to the amount of Ce3+. Fig. 6 shows the possible correlation between low temperature \(\text{H}_2 \) consumption and the \(I_{\text{DEF}}/I_{\text{F2g}} \) Raman ratio for the yAu/CeCo\textsubscript{x} samples. The low temperature \(\text{H}_2 \) consumption values linearly decrease with the \(I_{\text{DEF}}/I_{\text{F2g}} \) Raman ratio, confirming that the density increase of the Ce3+O\textsubscript{V\textsubscript{0}} entities is responsible for the lower \(\text{H}_2 \) consumption at a low temperature. In contrast to Au/CeO\textsubscript{2}, the Co\textsubscript{3}O\textsubscript{4} reduction observed between 200 and 350 °C (MT peak) seems to not be affected by the presence of metallic Au in terms of the peak position. The non-observance of the \(\text{H}_2 \) spillover effect can be explained by the absence of a close interaction between the Au sites and the Co\textsubscript{3}O\textsubscript{4}. This assumption can be related to the Co\textsubscript{3}O\textsubscript{4} morphology effect in the gold assisted Co\textsubscript{3}O\textsubscript{4} reduction.55

Surface chemical properties

The detailed XPS results obtained for the different samples are summarized in Table 3. The Ce 3d signal has a complex satellite structure owing to the hybridization between the Ce 4f and O 2p states. To estimate the surface ratios of Ce3+ to the total amount of Ce species, the Ce 3d region was fitted according to the research published Burroghs \textit{et al.}56 with ten components that take into account the spin orbit splitting Ce 3d\textsubscript{5/2}–Ce 3d\textsubscript{3/2} and other splitting caused by a redistribution of the entire energy spectrum after a core hole is created (Fig. S7†). There are four peaks (labelled as \(\nu^0, \nu^0, \nu^1, \) and \(\nu^1 \)) attributed to Ce3+ and six peaks (labelled as \(\nu, \upsilon, \nu^{ii}, \nu^{ii}, \nu^{iii}, \) and \(\nu^{iii} \)) attributed to Ce4+. The data were fitted using the constraints existing between the corresponding components 3d\textsubscript{5/2}–3d\textsubscript{3/2} given by Preisler \textit{et al.}57 All of the supports showed an analogous surface concentration for the Ce3+ species which increased in the corresponding Au catalysts (Table 3).

The Au 4f region showed the two spin–orbit components Au 4f\textsubscript{7/2} and Au 4f\textsubscript{5/2} (Fig. 7). The Au 4f\textsubscript{7/2} BE are listed in Table 3. The maximum of the Au 4f\textsubscript{7/2} photopeak was located at 85.3 eV for the Au/Ce samples, and it was located at a lower binding energy (84.9 eV) for the Au/CeCo\textsubscript{x} samples. These BE values correspond to the presence of the Au+ species, without excluding the possibility of metallic gold to some extent. The observed decrease of the BE in the presence of Co is indicative of the presence of less oxidized gold and can be explained by the reduced Au–CeO\textsubscript{2} interface.

The variations of the XPS Au/Ce atomic ratio are consistent with the increase of the gold content in the sample. The

Table 3 Summarized XPS results from the Ce 3d and Au 4f core-level spectra

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ce3+ (%)</th>
<th>Ce4+ (%)</th>
<th>Au 4f\textsubscript{7/2}/eV</th>
<th>Au/Ce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce</td>
<td>16</td>
<td>84</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.5Au/Ce</td>
<td>21</td>
<td>79</td>
<td>83.3</td>
<td>0.05 (0.013)</td>
</tr>
<tr>
<td>3Au/Ce</td>
<td>19</td>
<td>81</td>
<td>83.3</td>
<td>0.09 (0.027)</td>
</tr>
<tr>
<td>CeCo9</td>
<td>15</td>
<td>85</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.5Au/CeCo9</td>
<td>15</td>
<td>85</td>
<td>85.0</td>
<td>0.05 (0.013)</td>
</tr>
<tr>
<td>3Au/CeCo9</td>
<td>18</td>
<td>82</td>
<td>84.9</td>
<td>0.09 (0.027)</td>
</tr>
<tr>
<td>CeCo12</td>
<td>15</td>
<td>85</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3Au/CeCo12</td>
<td>17</td>
<td>83</td>
<td>84.8</td>
<td>0.10 (0.027)</td>
</tr>
</tbody>
</table>

The Au/Ce values in brackets correspond to the bulk ones.
larger XPS experimental values with respect to the bulk ones (Table 3) suggest that gold species are located on top of the ceria nanoparticles. Moreover, the finding that the XPS Au/Ce atomic ratio measured for the catalysts with Au 1 wt% doubled for an Au loading of 3%, confirming the comparable Au particle size for all of the prepared catalysts.

Static ToF-SIMS were used to probe the 3–4 outermost layers of the samples. Indeed, static ToF-SIMS allow the salient atomic and molecular information of the surface structure to be obtained.58

Fig. 8 shows the ToF-SIMS spectrum in the m/z (195–240) range obtained from the 1.5Au/CoCe9 sample. Along with the peak located at m/z = 197 assigned to Au+, secondary ions located at m/z = 213, 214, 229 and 230 were found and assigned to AuO−, AuOH−, AuO2− and AuO2H+, respectively. The detection of such entities indicates the presence of some oxidized gold in line with previous work.59 It is worth noting that a decrease in the AuO2−/Au+ ratio by a factor of about 2 for both ceria and Co promoted ceria supported gold catalysts is consistent with a decrease in the rate of oxidized gold with Au loading.

In order to investigate the role of cobalt and gold on oxygen defective CeO2−x, the evolution of the CeO2−/CeO2− ratio was investigated as a function of the nature of the samples (Table 4). It was found that a slight decrease of that ratio was indicative of a more defective ceria surface, with Co or/and Au addition, and this decrease is the more important as the Au(Co) content increases. Furthermore, ToF-SIMS studies revealed gold–ceria and cobalt–ceria interactions through the formation of secondary ions such as CeAuO2H− and CoCeO4−, Ce2CoO4−, Ce2CoO10− and Ce2CoOO2−, respectively. It is worth noting that Au2O3CeO4− ions were not detected ruling out some possible interactions between Au and Co. This result is consistent with the H2-TPR results, suggesting the absence of an interaction between Au and Co. Interestingly, the presence of the secondary ion Co2O4− (m/z = 240) in connection with the presence of the cobalt spinel oxide on both Co containing samples was found, which is in agreement with the XRD and Raman results. It should be noted that the CeAuO3−/Au+ intensity ratio significantly decreased with the Au content as shown in Fig. S8† suggesting a decrease of the gold–ceria interface related to the relative decrease of the oxidized gold content.

The presence of chloride ions Cl− was also observed to be linked to the nature of the gold precursor, which is HAuCl4. Such observation using ToF-SIMS60 is important knowing that chloride may have a great impact on the catalytic performance. The intensity ratio of Cl−/total allowed information to be obtained about the extent of chlorine contamination (Table S1†). This ratio increased in the presence of gold content. The intensity ratio was about one order of magnitude higher for 1.5AuCe than for 3AuCe and rather similar features were observed for the Co–Au samples. As the magnitude, but also the location of Cl− is of importance, possible direct interactions between Cl− and Ce, Co and Au have been investigated. It is worth mentioning that the CoCl2 secondary ions, in contrast to AuCl−, were not observed. This clearly indicates the presence of chloride ions in the surrounding gold centers. A decrease of the AuCl2−/Au+ intensity ratios from 1.5AuCe(Co) to 3.0AuCe(Co) indicates that the amount of gold bonded to Cl− increases with the decreasing Au content. This is not accompanied by the agglomeration of gold as the Au+4/Au+ intensity ratios remained lower for the 1.5 Au wt% samples. No AuCl2O2− ions were detected, suggesting that the presence of Cl− induces the formation of the AuCl2− entities, in line with the observation of the AuCl+, AuCl2− and AuCl3− ions (in m/z) at 232, 267 and 302, respectively. The reverse correlation can be made when considering the CeCl2−/Ce+ intensity ratios. Regarding Co, the formation of the oxichlorocobalt species is expected to be consistent with the detection of CoOCl ions.

Catalytic properties

The HCHO light-off curves for the prepared supports are shown in Fig. S9† The pure ceria support was poorly active, reaching 40% HCHO conversion in CO2 at 300 °C. However, doping CeO2 with Co significantly enhanced the catalytic activity and whatever the cobalt content the total conversion of formaldehyde was obtained at 250 °C. The higher activity for HCHO oxidation of the CoCe oxides in comparison with that of pure CeO2 can be explained by the higher redox properties of the composite owing to the combination of the redox properties of both oxides, that is the reduction of Co3O4 and the assisted reduction of CeO2 in the vicinity of the cobalt species, as suggested by the H2-TPR analysis. Indeed, when studying pure CoO4, Fan et al.61 proposed that Co3+ ions act as active sites for total formaldehyde oxidation. Dioxygen can be activated over ceria oxygen vacancies.62 Therefore, it can be proposed that Co3+ could be reduced by HCHO into Co2+, while activated oxygen transforms Ce3+ into Ce4+. A continuous oxygen transfer from CeO2 to CoO could occur through the synergistic effect between CeO2 and Co3O4 as illustrated in Scheme S1† The HCHO light-off curves for the Au/Ce and Au/CoCe catalysts are shown in Fig. 9A. A remarkable improvement in the HCHO oxidation activity was observed when Au is added to the supports, with full conversion being achieved at around 100 °C for all of the catalysts. For the Au/
CeO₂ samples, the two-fold gold content increase allowed the HCHO conversion into CO₂ to rise from 20% to 90% at 25 °C, respectively. Starting from 60 °C, the difference in conversion was much less pronounced owing to the significant increase of HCHO oxidation in the temperature range of 20–60 °C in the presence of the Au1.5/Ce catalyst (Fig. 9A). The effect of gold loading on formaldehyde oxidation has already been addressed by several authors. Regardless of the support used, for example, ZrO₂, FeOₓ, CeO₂, it is generally highlighted that increasing the gold content results in enhancement of the catalytic performance in formaldehyde oxidation. The addition of slight amounts of Co (9 or 12 mol%) notably boosted the formaldehyde conversion of the Au/CeO₂ materials. The results were especially impressive with a lower gold content (1.5 wt%) as 80% of HCHO conversion at 25 °C was obtained for 1.5Au/CeCo9, while the unmodified 1.5Au/Ce catalyst achieved the same conversion at around 60 °C. Lakshmanan et al. demonstrated that gold nanoparticles enhanced the oxygen storage capacity and the rate of oxygen exchange and promoted the activation of dioxygen by generating O₂²⁻ species at the gold/ceria interface perimeter. This result is consistent with the observance of a peroxo species (O₂²⁻) using Raman spectroscopy for the 3Au/CeCoₓ samples.

The durability tests over Au related catalysts are shown in Fig. 9b. An increase was observed for the HCHO conversion in the first hours of the test, except for the 1.5Au/Ce catalyst, for which the conversion always increased with time but at a lower rate. This induction period can be related to the reactive desorption of the chemically intermediate species resulting from the partial oxidation of HCHO, such as formates. After the induction period, the HCHO conversion into CO₂ with time remained rather stable or decreased to a lesser extent with time.

The HCHO conversion obtained at t = 0 h increased with the Raman ratio I_{DEF}/I_{F₂g} (Table 1). This clearly shows the beneficial role of oxygen vacancies in HCHO total oxidation. The positive role of cobalt in the formation of oxygen vacancies could be the cause of the better activity. The increase of defects in the ceria was highlighted by the increase of Ce³⁺O⁻VO⁻ entities (Raman analysis) and by the increasing amount of Ce³⁺ species in line with the reduced amounts of H₂ consumption observed on H₂-TPR upon adding Co. It is well known that oxygen vacancies allow greater oxygen mobility and the formation of oxygen active species that can improve the oxidation of the reaction intermediates. The correlation between the HCHO conversion into CO₂ and the I_{DEF}/I_{F₂g} Raman ratio clearly supports the fact that the amount of oxygen vacancies play a critical role in the HCHO total oxidation.

The catalytic activity was compared in terms of the activity expressed as μmole of HCHO converted into CO₂ per second and per gram of Au, after 40 h of testing. The data are compared to those obtained at t = 0 h and are also listed in Table 5.

As reported in Table 5, all catalysts exhibited similar activities of about 2 μmol s⁻¹ g⁻¹ except for 1.5Au/CeCo9 which displayed a two-fold activity, namely 3.9 μmol s⁻¹ g⁻¹ at 40 h. The absence of a gold dispersion modification revealed by the XPS data between the 1.5Au/Ce and 1.5Au/CeCo9 samples cannot explain this improvement in the activity. In contrast,
an increase in the gold ceria interface, promoting oxygen vacancies, resulting in more oxidized gold species are recognized to be key parameters for increasing the activity over the 1.5Au/CeCo9 sample.

Conclusions

The effect of Co incorporation into Au/CeO2-based catalysts has been investigated by varying the Co and Au content. The catalytic performances in HCHO oxidation were discussed in line with the physico-chemical characterizations of the fresh catalysts. BET, XRD, Raman and TPR characterization were performed on the Au/Co-promoted ceria catalysts and suggested that cobalt is mostly in the Co3O4 phase, no direct evidence of Co ions insertion into the CeO2 lattice were found using XRD. The HRTEM images indicated the presence of Au particles around 5 nm and the formation of CeO2 nanorods. The high dispersion of Au particles on the ceria top and a comparable Au size for all of the prepared catalysts were confirmed using XPS analysis.

The beneficial role of cobalt in the formation of oxygen vacancies directly connected to the Ce3+ amount was proven using Raman and TPR. The oxygen vacancies formed play a double role in enhancing the HCHO catalytic activity of the Au/Co-promoted CeO2 catalysts: Ce3+ ions represent nucleation centers for the stabilization of the active Au ionic species and, at the same time, gaseous oxygen is easily activated over these centers. The presence of close gold–ceria and cobalt–ceria interactions were further confirmed using ToF-SIMS studies, and no Au2O3Co2+ ions were detected, ruling out some of the possible Au–Co contact.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements

Leonarda Francesca Liotta thanks the University of Lille for the visiting professor position. This research is carried out in the field of the COST Action 17136 (Indoor Air Pollution Network), has been partially supported by a French–Italian project (PHC Gallièe N°39624UG) and by an European Program INTERREG V France—Wallonie—Flanders (FEDER) (DepollutAir). Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur et de la Recherche and Région Hauts-de-France are also acknowledged for supporting this work. The authors thank Jean-Charles Morin, Nicolas Nuns, Olivier Gardoll, Christine Lancelot and Laurence Burylo for their contribution to the Ramo, ToF-SIMS, H2-TPR, HRTEM and XRD measurements, respectively.

Notes and references
