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History

Before 1956, some visions : Alan Turing, formal neurons, robots Al as a mean

1956:
196x:
1968:
1969:
1973:
198x:
199x:
2000:
2010:

Dartmouth workshop, first occurence of the term Al Al as a goal
Problem solving, games, natural langage

2001 a space odyssey, HAL

Perceptrons (Minsky-Papert), kills research on NNs

Lighthill Report, first AI Winter

Prolog+FGCS; Experts Systems; Checkers (from Samuel to Chinook)

Second Al Winter, but Deep Blue (chess) and first convolutional networks (CNNs)

first Web applications (data) "5 ‘

D P

Deep learning (triumph of CNNs, AIphaGO, )

2018+: toward a third AI Winter?



History

Before 1956, some visions : Alan Turing, formal neurons, robots Al as a mean

Can Machines Think?

The problem is mainly one of programming. [...] brain estimates: 107 to 10'° bits. [...] | can produce about a
thousand digits of programme lines a day, so that about , working steadily through the ,
might accomplish the job, if nothing went into the wastepaper basket. Some

How?

by (...) mimicking , we should hope to modify the machine until it could
be relied on to produce definite reactions to certain commands.
One could carry through the organization of an intelligent machine with only two
interfering inputs, one for , and the other for




History

Before 1956, some visions : Alan Turing, formal neurons, robots

1956: Dartmouth workshop, first occurence of the term Al

1956 Dartmouth Conference:
The Founding Fathers of Al

/

John McCarthy

Marvin Minsky Claude Shannon Ray Solomonoff

Alan Newell Herbert Simon Arthur Samuel

(. ¥
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And three others...

Oliver Selfridge
(Pandemonium theory)

Nathaniel Rochester
(IBM, designed 701)

Z Trenchard More
(Natural Deduction)

Al as a mean

Al as a goal

We propose a study of artificial intelligence [..]. The
study is to proceed on the basis of the conjecture that
every aspect of learning or any other feature of
intelligence can in principle be so

that a machine can be made to it.

The vision : reasoning is a sequence of logical
operations that a computer can reproduce

Goal : A General Problem Solver
(aka 2000+ : Artificial General Intelligence)
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~Definition?

Have machlnes fﬁataccor* pllsh tasks related ’eo (human)
intelligence - possib’, | et erthan Humans |
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Have machi r{és:fﬁat ‘a°'c¢c.omf|5"li._s'h;ta§ks no‘hjac:-hi.ﬁ,e ever did

e Jean-Louis Lauriére, 80s.
e Philippe Kahn,. late 80s
e Gérard Sabah, 2017
o ™ (rapport de 'OPECST)



~Definition ?

Raisonnement Logique

... a set of techniques, each with its
own objectives, more precise than
«intelligent reasoning»

Académie des Technologies 2018

Repreésentation Connaissances

Planning et Navigation

Traitement Langage Naturel

Deep Learning

Perception
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Autonomy and Robotics

*DARPA Autonomous Vehicle Challenge

o in the désert, then in urban context

LeNet (Deep Neural Network) outperforms all challengers from Computer
Vision in image recognition

*DARPA Rescue Challenge robots who drive, walk in chaotic context,
climb stairs, repair broken machines, etc

**Psibernetix shoots down (in simulation :-) the best US Air Force pilots
o genetic algorithms and fuzzy logic ... on a Raspberry Pi!

Intel bought Israeli company MobilEye for 15 billions

**Boston Dynamics robots better and better performing
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Games

**IBM Watson beats best human players at Jeopardy

o NLP + web search + evaluation, 3 seconds on HPC
Deepmind human performances on some (not all) Atari video games with
Deep Reinforcement Learning

o Input: pixels; Output: joystick

Deepmind AlphaGo beats World Champion of GO with a mix of
Supervised and Reinforcement Learning

Deepmind AlphaZéro beats AlphaGo 100-0 using only Deep
Reinforcement Learning and self-plays

o about 2 stones ahead of best human

o AlphaZero can also be trained for other games (e.g., chess)
*Libratus crushes the best Poker players of the world

o Reinforcement Learning and Bayesian techniques



NLP and and disability support

Microsoft Skype Translator translates several languages in real time with
Deep Learning. Similar performances for Google Translate, Pilot, ...
Apple Siri, Microsoft Cortana, Amazon Alexa personal assistants use
Speech Recognition and (some) Automated Reasoning

**Google Knowledge Graph uses semantics to better structure the results
of queries

Microsoft translates from Chinese to English as good as human translators
o with a double Deep Neural Network

Ava, RogerVoice help deaths and hearing-impeached (subtitling,
telephone,...)

Facebook can label photos, and describe them to blind people



. '-'m'tsand a"enges . e

2 brl ef |nrodu

o

to AI and Ieep | earmng :

o Hlstory and DeflmtlonS
9 Some Recent Successes




A . = ] 4
_ .\ Machine Learning ,
N | N ¥ /| 4
\ y
‘s \\ . "/ "

Artificial Intelligence is (Deep) Machine Learning



A . = ] 4
.\ Machine Learning ,
N | N ¥ /| 4
\ y
‘s \\ . "/ "

Artificial Intelligence is ‘De=p; Machine Learning



\ . = :
\ Machine Learning ,

N[ i /| o
. s

~ 5 . ’ r
n 5 ’ A _—

Artificial Intelligence is (Dcep) Machine Learning

.

What has changed :

e Data Deluge

e - Moore law or continuation
e New algorithms or better understanding of old ones
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Learning from examples recognition tasks
‘e~ Supervised all examples are labélled
e Semi-supervised some examples are labelled
e Unsupervised no example is labelled

Reinforcement Learning sequential decision making
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Learning from examples recognition tasks
KE 0) all examples are labélled

e Semi-supervised some examples are labelled

e Unsupervised no example is labelled

Reinforcement Learning sequential decision making



Supervised Learning
A toy case-study

e One example = (x,,X,) + label (red or blue here)
e Goal: a model (function of x.,x,) that separates the labels
e and allows to correctly label future unlabelled example



Supervised Learning

A zoology of models

Polynoms

Bayésiens Networks

Decision trees and Random Forrests

Support Vector Machine (kernel machines)

Artificial Neural Networks neuron

I W..
1)

v
i
linear
function

A network of neurons
One neuron Parameters are the weights w;



Deep Neural Networks

Learning Phase

Back-propagation
e Present the examples 1 by 1

o or mini-batches by mini-batches
e Compute the corresponding error

o difference between network output

and label

e Adjust the weights w;

o toward a decrease of the error
e Loop

Recognition Phase
Present an unlabelled example, the output of the network is the predicted label



Deep Neural Networks

A Deep (layered) Neural Network is
a sequence of representations of the data



Deep Neural Networks

A Deep (layered) Neural Network is
a sequence of representations of the data

L ] { [»
simple features



Deep Neural Networks

A Deep (layered) Neural Network is
a sequence of representations of the data
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complex features
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End-to-end Learning

Features and Classifier are learned together CAT



C1. feature maps . - S4:f. maps 16@5x5

S2: 1. maps | g ‘ C5: layer gq.
6@14x14 | | pe— 420 v F6: layer QUTPUT

6@28x28

— |
Full conAection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection




Elephants Chairs
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Top-5 Error Rate (%)
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Deep Supervised Learning

Better than human learning

ILSVRC Top 5 Error on ImageNet

cv

Deep Learning

Human

Human

2010

2011

2012

2013

2014

Human

2015

2016




Deep Supervised Learning

e Qutstanding performances
... in well-defined domains
o Image recognition
o Action identification in videos
o Natural Language Processing
o Automatic translation
o Image captioning
e Many unexpected applications, e.g.,
o domain transfer (DANNSs) (see next talk)
o generative models (GANSs)
e Above all, discovery of latent representations

But ...
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Limits and Challenges

Beyond performances

Small Data transfer learning, data augmentation
Cost

Validation and certification

Interpretability and explainability

Causality

Transparency and Fairness

Toward Trustable Good Al
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Huge computational/energy cost

e Loads of data
e Tons of weights

7 ExaFLOPS 20 ExaFLOPS 100 ExaFLOPS
60 Million Parameters 300 Million Parameters 8700 Million Parameters

A, ZAS
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TAN GANS
o
A

2015 - Microsoft ResNet 2016 - Baidu Deep Speech 2 2017 - Google Neural Machine Translation
Superhuman Image Recognition Superhuman Voice Recognition Near Human Language Translation



Meta-cost

+ high number of hyperparameters to tune

Cost function

Topology of the network

o nblayers, nb neurons, residual or not residual, ...
Activation function

Batch size

Optimizer

o and its parameters (e.g., learning rate)
Initialization

Dropout or not dropout

etc

Empirical rules, or meta-optimization
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Robustness

To noise at test time : adversarial examples

Athalye et al. 2017

Szegedy et al.,2014



Robustness

To unseen contexts

A cow doesn’t go to the beach

Bottou et al., 2017



Target instances from Fish class

Poison
instances
made for
fish class
from dog
base
instances

Target instances from Dog class

Poisons
made for
dog class
from fish
ses




Validation and certification

An experimental science
No formal validation of learned models
Completeness issue for statistical validation

Need to validate the training data
o Traceability regulations

Guaranteed bounds e.g., Asimov’s robotic laws
Toward formal proofs for Al? e.g., Mirman et al., 2018
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0]i\:17)y) Explainable Al — What Are We Trying To Do?

Today

Why did you do that?

=EE" -8
EB-' » Why not something else?
mall WET Learning This is a cat - When do you succeed?
e (p=.93) - When do you fail?
] B Process ‘
HE<BIr = When can | trust you?
e » How do | correct an error?
Training Learned Output User with
Data Function a Task
* | understand why
s ) This is a cat: « | understand why not
Ne"Y P ¥t 7 P oy .gnhdaf:l;l:;s whiskers, - | know when you’ll succeed
Learning [ I’-i-"i"-‘.” 1'.’.1’\ B banthle fatin: - | know when you’ll fail
0% &b b b N S « | know when to trust you
Process PRI ila A I k hen to trust
50 e e ok e e | « | know why you erred

Training Explainable Explanation User with
Data Model Interface a Task




Interpretability and explainability

Learned models are black boxes

lll-defined and subjectives concepts

Depends on the type of model

o moderately: decision trees are ok

o ... not random forests

Debate

o How much are you ready to lose in accuracy?

o Cite the nearest known examples e.g., influence fns, Koh & Liang, 2017
o Well, we trust our doctor, don’t we ...

Symbolic to the rescue?
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US crude oil imports from Norway
correlates with

Drivers killed in collision with railway train
Correlation: 95.45% (r=0.954509)

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
150 million barrels 100 deaths
>
]
Z
©100 million barrels 80 deaths 2
= <
g 5
E 3
3 50 million barrels 60 deaths g
(]
3 @
3]
(%]
=
0 million barrels 40 deaths
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Railway train collisions == US crude oil imports from Norway
tylervigen.com



Correlation vs causality

Supervised learning doesn’'t make a difference

“What if” scenarios needed for decision making
Causality usually from common sense
Difficult to learn from data

~OK for pairs of variables (several challenges 2008+)
Still an open question in general
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Transparency and Fairness

Mandatory for societal acceptance

e Open Source not sufficient

o Open Data
o controlled experiments auditability by law
e Recognized labels e.g., FDU, Maathics (Toulouse)

e Discrimination Impact Assessment?

See also the TransAlgo platform
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- Collaboration, not Competition




